Final Exam
Series A

28 January 2020

Please use separate sheets for different problems. Please answer all questions on a single sheet. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks and each question is worth 5 marks. To pass it necessary (but not sufficient) to score at least 50% out of 6 questions.

Problem 1.
Let $V=\operatorname{lin}((1,1,1,1),(1,3,-3,-5),(2,3,0,-1))$ be a subspace of \mathbb{R}^{4}.
a) find a basis \mathcal{A} of the subspace V and the dimension of V,
b) find coordinates of the vector $v=(3,5,-1,-3) \in \mathbb{R}^{4}$ relative to the basis \mathcal{A}.

Problem 2.

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{c}
2 x_{1}+7 x_{2}+3 x_{3}+5 x_{4}=0 \\
x_{1}+3 x_{2}+2 x_{3}+x_{4}=0
\end{array}\right.
$$

a) find a basis \mathcal{A} of the subspace V and the dimension of V,
b) if $v=\left(2 t,-t^{2}, 2,1\right)$ find all $t \in \mathbb{R}$ such that $v \in V$.

Problem 3.

Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear endomorphism given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(3 x_{1}-x_{2}, 2 x_{1}, 3 x_{1}-3 x_{2}+2 x_{3}\right) .
$$

a) find the eigenvalues of φ and bases of the corresponding eigenspaces,
b) find a matrix $C \in M(3 \times 3 ; \mathbb{R})$ such that

$$
C^{-1} M(\varphi)_{s t}^{s t} C=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Problem 4.
Let $\mathcal{A}=((1,1,2),(0,1,3),(1,0,0)), \mathcal{B}=((1,2),(0,1))$ be ordered bases of \mathbb{R}^{2}. Let $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformations given by the matrix

$$
M(\varphi)_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{rrr}
2 & 0 & 1 \\
-1 & 1 & -2
\end{array}\right],
$$

and let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation given by the formula

$$
\psi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{1}+x_{2}\right) .
$$

a) find the formula of φ,
b) find the matrix $M(\psi \circ \varphi)_{\mathcal{A}}^{\mathcal{B}}$.

Problem 5.

Consider the following linear programming problem $-x_{2}-3 x_{3}+2 x_{5} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}+5 x_{3}+7 x_{4}-5 x_{5}=9 \\
x_{1}+x_{2}+3 x_{3}+4 x_{4}-3 x_{5}=5
\end{array} \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{1,2\}, \mathcal{B}_{2}=\{3,4\}, \mathcal{B}_{3}=\{3,5\}$ are basic? Which basic set is basic feasible? Write the corresponding feasible solution.
b) solve the linear programming problem using simplex method.

Questions

Question 1.

Is the matrix $A=\left[\begin{array}{cc}a^{2} & a \\ a & 2\end{array}\right]$ positive definite for all $a \in \mathbb{R}$?

Question 2.

If $v, w \in, \mathbb{R}^{3}, v \neq \mathbf{0}$, is the image of vector $w \in \mathbb{R}^{3}$ under the (linear) orthogonal symmetry about the line $V=\operatorname{lin}(v)$ equal to

$$
S_{V}(w)=2 \frac{w \cdot v}{v \cdot v} v-w ?
$$

Question 3.

If $A \in M(2 \times 2 ; \mathbb{R})$ and $A+A^{\top}=\mathbf{0}$, does it follow that $A^{3}+\left(A^{\top}\right)^{3}=\mathbf{0}$?
Question 4.
Is it possible that $A, B \in M(2 \times 2 ; \mathbb{R})$, $\operatorname{det} A \neq 0$, $\operatorname{det} B \neq 0$ but $\operatorname{det}(A+B)=0$?
Question 5.
Does there exist matrix $A \in(100 \times 3 ; \mathbb{R})$ with pairwise different rows such that the dimension of the set of all solutions of the equation $A x=\mathbf{0}$ is equal to 1 ?

Question 6.

Are the affine subspaces $E, H \subset \mathbb{R}^{3}$ given by

$$
\begin{gathered}
E: x_{1}+2 x_{2}-3 x_{3}=2 \\
H=(1,2,1)+\operatorname{lin}((1,2,-3)),
\end{gathered}
$$

perpendicular?

